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Abstract. We propose a general dual program for a constrained optimization problem via gener-
alized nonlinear Lagrangian functions. Our dual program includes a class of general dual programs
with explicit structures as special cases. Duality theorems with the zero duality gap are proved under
very general assumptions and several important corollaries which include some known results are
given. Using dual functions as penalty functions, we also establish that a sequence of approximate op-
timal solutions of the penalty function converges to the optimal solution of the original optimization
problem.
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1. Introduction

Continuous optimization problems have various applications in economics, engin-
eering and management science. Consequently considerable attention has been
devoted to the study of theory and efficient numerical methods for optimization
problems. Based on the zero duality gap property between the primal convex op-
timization problem and its linear Lagrangian dual problem, some important al-
gorithms have been proposed under regular assumptions (see, e.g., [2, 3, 8, 10]).
For a generalized convex optimization problem and its linear Lagrangian dual
program, the zero duality gap property has been widely studied and a number
of important results have been obtained (see, e.g., [7, 4, 11]). For various Lag-
rangian methods, the zero duality gap property is essential. However, for non-
convex optimization problems, many examples demonstrate that nonzero duality
gap exists if the dual problem is constructed with a linear Lagrangian function.
Thus, it is difficult to develop effective algorithms for nonconvex programs via
linear Lagrangian functions, which leads many researchers to construct nonlin-
ear Lagrangian dual programs for nonconvex optimization problems (see, e.g.,
[15, 6, 5, 12, 13, 1, 9]). In [15, 6], nonlinear Lagrangian functions are constructed
by maximizing the convolution function of the objective function and the con-
strained functions. In [5, 12, 13, 1], nonlinear Lagrangian functions are formulated
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via increasing functions or increasing and positively homogenuous functions. In [9]
more general nonlinear Lagrangian functions, which include the above mentioned
nonlinear Lagrangian functions as special cases, are proposed and relevant dual
programs are studied. What is worth noting is that the zero duality property studied
in [15, 6, 5, 12, 13, 1, 9] was proved under very strong conditions.

This paper improves and generalizes the nonlinear Lagrangian functions in [9].
Under very general assumptions, the zero duality property is established, and some
important corollaries are also obtained. These corollaries include the corresponding
results in [5, 12, 13, 1, 9] as special cases. Furthermore, using the dual functions as
penalty functions, we prove that the ε-optimal solution of the penalty function ap-
proaches a solution of the original problem as ε → 0, which provides a theoretical
foundation for the development of algorithms with a global convergence prop-
erty. Finally, some special classes of nonlinear functions Lagrangian are studied
to verify our above results.

2. Generalized Lagrangian Functions and Dual Programs

Consider the following general nonlinear optimization problem:

(P) min{f0(x)|x ∈ X0 ⊂ X},
where X is a metric space, X0 ⊂ X is a nonempty closed subset which denotes the
feasible solution set of (P), and f0 : X −→ R is a continuous function.

A dual for (P) can be constructed as follows: given a nonempty set R, the space
of multipliers. Then a generalized Lagrangian for problem (P) is any function L :
X × R −→ R such that

inf
x∈X0

f0(x) = inf
x∈X

sup
d∈R

L(x, d). (1)

The dual of (P) is defined as

(D) max{q(d)|d ∈ R},
where

q(d) := inf
x∈X

L(x, d), d ∈ R.

Since, obviously,

inf
x∈X

sup
d∈R

L(x, d) � sup
d∈R

inf
x∈X

L(x, d),

it follows that

MP := inf
x∈X0

f0(x) � sup
d∈R

q(d) =: MD.
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MP is the primal optimal value, and MD is the dual optimal value. And MP −MD �
0 is the duality gap. If MP = MD, (P) and (D) are said to have a zero duality gap.
Since MP = −∞ implies MD = −∞, we always assumption that MP > 0 in the
sequel.

Now we make some hypotheses for f0(x) and L(x, d). In Section 3, we will see
that the zero duality gap is true under these hypotheses.

Let ψ : X −→ R be a continuous function such that

x ∈ X0 ⇐⇒ ψ(x) � 0;

X
∗ = {x ∈ X0|f0(x) = MP }, i.e., X

∗
is the set of optimal solutions of (P);

X
∗δ = {x ∈ X|MP − δ < f0(x) < MP + δ};

X
<δ

ψ = {x ∈ X|ψ(x) < δ};

X
�δ

ψ = {x ∈ X|ψ(x) � δ};
B(x0, ρ) = {x ∈ X| infξ∈X0 d(x, ξ) < ρ}, where d(·, ·) is the metric in X.

Some hypotheses are given as follows:
(H1) f0(x) be uniformly continuous on an open set G containing X0;
(H2) for all x ∈ X0, for all d ∈ R, L(x, d) = f0(x);
(H3) for all ε > 0, there exists an open set G(ε) containing X0, such that

L(x, d) � f0(x) − ε, ∀x ∈ G(ε),∀d ∈ R;
(H4) for every γ > 0, there exists d ∈ R such that

L(x, d) � γ ψ(x), ∀x ∈ X\X0;
(H5) the point-to-set map X

<δ

ψ is upper semi continuous at δ = 0.
The following are some results on weak duality and saddle point, whose proofs

are elementary and omitted.

THEOREM 2.1. (Weak duality). Assume that (H2) and (H4) hold. Then

MP � MD.

THEOREM 2.2. Assume that (H2) and (H4) hold. If (x∗, d∗) is a saddle point of
L(x, d), then x∗ is an optimal solution of problem (P).

3. Zero Duality Gap

Zero duality gap and weak duality provide a basic characterization of dual pro-
grams. Specially, zero duality gap is a basis for designing various efficient al-
gorithms. Now we prove zero duality gap for (P) and (D).
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THEOREM 3.1. Suppose that (H1) − (H5) hold, then MP = MD.

Proof. By Theorem 2.1, MP � MD. We only need to prove MP � MD. For any
ε > 0, we have

MP − ε < MP � f0(x).

By (H1), ρ0 > 0 can be taken sufficiently small such that B(X0, ρ0) ⊆ G and for
any x ∈ B(X0, p0)

f0(x) > MP − 2ε (2)

holds. It follows from (H3) that there exists an open set G(ε) ⊇ X0 such that, for
any x ∈ G(ε), d ∈ R, there holds

L(x, d) � f0(x) − ε. (3)

We assume, without loss of generality, that G(ε) ⊆ B(X0, ρ0) (otherwise G(ε)
⋂

B

(X0, ρ0) can be used to replace G(ε)). It follows from (2) and (3) that

L(x, d) � MP − 3ε (4)

holds for any ε ∈ G(ε), d ∈ R.

By (H5), X̄<δ
ψ is upper semi-continuous at δ = 0. Let δ0 be sufficiently small so

that

X̄
<δ0
ψ ⊆ G(ε) or X\G(ε) ⊆ X̄

�δ0
ψ (5)

By (H4), for 2M/δ0, there exists d̄ ∈ R such that, for any x ∈ X\X0, there
holds

L(x, d̄) � 2MP

δ0
ψ(x) (6)

The combination of (4), (5) and (6) yields

MD = sup
d∈R

inf
x∈X

L(x, d) � inf
x∈X

L(x, d̄)

= min{ inf
x∈G(ε)

L(x, d̄), inf
x∈X\G(ε)

L(x, d̄)}
� min{ inf

x∈G(ε)
L(x, d̄), inf

x∈X̄
�δ0
ψ

L(x, d̄)}

� min{MP − 3ε, 2MP

δ0
inf

x∈X̄
�δ0
ψ

ψ(x)}
� min{MP − 3ε, 2MP } = MP − 3ε.

Since ε > 0 is arbitrary, we have

MD � MP . �
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From the proof of Theorem 3.1, function ψ(x) in (H4) and upper semi-continuity
assumption of the level set for ψ(x) in (H5) are important conditions for the zero
duality gap. But, in fact, it is difficult to verify (H5). We will give some class of
functions which satisfy (H5) and several Corollaries of Theorem 3.1.

DEFINITION 3.1. The function g : X −→ R is said to have property (A) at
x0 ∈ X′ ⊂ X, if, for sufficiency small ρ > 0, there exists M > 0, for any x ∈
X\B(X′, ρ), there exists y ∈ X\B(X′, ρ), such that

(i) d(x0, y) � M,
(ii) g(y) � max{g(x0), g(x)}.

DEFINITION 3.2. The function g : X −→ R is said to have property (B) at
x0 ∈ X′ ⊂ X, if there exists a finite M > 0, for any x ∈ X\X′, there exists
sequence y0(= x), y1, · · · , yk, yk+1(= x0) ∈ X, such that

(i) max{d(yi, yi+1)|0 � i � k} � M,
(ii) max{g(yi)|1 � i � k} � max{g(x0, g(x)}.
It is obvious that any function g which is defined on a compact set has property

(A) and property (B). If g is quasi convex, psedoconvex or arcwise quasiconvex at
some x0 ∈ X′, it is obvious that g has property (B).

Let X′ = {x ∈ X|g(x) � α}. Recall that X
<δ

g = {x ∈ X|g(x) < δ}.
PROPOSITION 3.1. Assume that g(x) is continuous and has property (A). Then

X
<δ

g is upper continuous at δ = α+ (from the right).

Proof. If X
<δ

g is not upper continuous at δ = α+, then there exist sufficiently

small ρ0 > 0, δk −→ α+ (k −→ ∞), and xk ∈ X
<δk

g , such that

xk �∈ B(X′, ρ0).

By definition 3.1, there exist M > 0 and yk ∈ X\B(X′, ρ)

(i) d(x0, yk) � M,
(ii) g(yk) � max{g(x0), g(xk)}.
(i) yields that {yk} is bounded, hence there exist an infinite subset N0 ⊂ N =

{1, 2, · · · , }, such that

{yk}k∈N0 −→ y∗.

From x0 ∈ X′, xk ∈ X
<δk

g and δk > α, (ii) yields

g(yk) � max{g(x0), g(xk)} � max{α, δk} = δk.

By the continuity of g and noting that δk −→ α+, we have

g(y∗) � α.

Hence, y∗ ∈ X′ ⊂ B(X′, ρ). This is a contradiction.
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PROPOSITION 3.2. Let X′ be compact and g(x) be continuous and have property

(B). Then X
<δ

g is upper continuous at δ = α+.

Proof. From the boundedness of X′, we have that

property (B) implies property (A).

By Proposition 3.1, we know that Proposition 3.2 is true. �
COROLLARY 3.1. Assume that (H1)-(H4) hold and ψ(x) has property (A) at
x0 ∈ X0. Then MP = MD.

Let U,V ⊂ X. Define by

U ⊕ V = {z ∈ X|z = x + y, x ∈ U, y ∈ V }.
COROLLARY 3.2. Assume that (H1)-(H4) hold, ψ(x) is a concave function on
X and satisfies

{x ∈ X|ψ(x) � 0} = U ⊕ V,

where U is a nonempty compact convex set, V is a nonempty closed convex cone.
Then MP = MD .

Proof. By Corollary 3.1, it is sufficient to show that ψ(x) has property (A).
Since X is a closed set and X0 is a closed set, X\X0 is an open set . Taking ρ > 0
sufficiently small such that U\B(X0, ρ) �= ∅, then X\B(X0, ρ) is a closed convex
set (since B(X0, ρ) is an open set). From the conditions, we know that there exist
a compact convex set U ′ and a closed convex cone V ′ such that

X\B(X0, ρ) = U ′ ⊕ V ′. (7)

Noting that ψ(x) � 0(x ∈ X\X0), i.e., ψ(x) has a lower bound on X\X0. It
follows from the results in [14] that

ψ(y) � ψ(y + λz), ∀y ∈ U ′,∀z ∈ V ′ and λ � 0. (8)

Hence, for x ∈ X\B(X0, ρ), by (8), we know that there exist y ∈ U ′, z ∈ V ′ and
λ0 � 0, such that x = y + λ0z. By (9), we obtain

ψ(y) � ψ(x).

From Boundness of U ′, we see that ψ(x) have property (A) for any x0 ∈ X0. �
COROLLARY 3.3. Suppose that (H1) − (H4) hold, X0 is bound and ψ(x) have
property (B) at x0 ∈ X0. Then MP = MD .

COROLLARY 3.4. Suppose that (H1) − (H4) hold, X0 is bound and ψ(x) is
quasiconvex or pseudoconvex or arcwise quasiconvex at x0 ∈ X0. Then MP = MD .
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COROLLARY 3.5. If (H1) − (H4) hold and X is a compact set, then MP = MD .

REMARK . Corollary 3.5 is the main result in [9] (see. Theorem 1). If (H3) is
instead of the follow assumption

(H3)
′ ∀x ∈ X\X0, ∀d ∈ R, there holds L(x, d) � f0(x). Then our Lagrangian

model is corresponding model in [5, 12, 13] and [9]. Hence, based on Corollary
3.5, we have follow Corollary.

COROLLARY 3.6. If (H1), (H2), (H3)
′, (H4) hold and there exists α > MP such

that level set X
�α

f0
= {x ∈ X|f0(x) � α} has bound. Then MP = MD.

Proof. From (H3)
′, we have

inf
x∈X\X�α

f0

L(x, d) � inf
x∈X\X�α

f0

f0(x) � α > MP

MP � MD yields

inf
x∈X

L(x, d) = inf
x∈X

�α
f0

L(x, d),∀d ∈ R.

Hence, replacing X by X
�α

f0
and applying Corollary 3.5, the Corollary follows. �

REMARK . Corollary 3.6 is the main results in [5, 13] (see Theorem 4.2 and
Theorem 3.1).

4. Penalty Function Methods

In this section, we use the dual function q(d) of (P), for designing a theoretical
algorithm, and we also prove that the algorithm is globally convergent.

DEFINITION 4.1. Let ε > 0 and d ∈ R. x∗(d, ε) ∈ X is said to be an ε-optimal
solution for the following problem (D(d)):

q(d) = inf{L(x, d)|x ∈ X},
if L(x∗(d, ε), d) � q(d) + ε.

From L(x, d) � 0 (∀x ∈ X,∀d ∈ R), it is obvious that for each d ∈ R,
(D(d)) always has an ε-optimal solution.

Algorithm (A). Let M � 2MP + 1, δ1, εk ∈ (0, 1), rk � 1, and lim
k−→∞

εk = 0,

lim
k−→∞ rk = ∞.

Step 1. Let k := 1, and find dk ∈ R such that

2Mrk

δk

ψ(x) � L(x, dk), ∀x ∈ X\X0.
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Step 2. Solving problem (D(dk)), let x∗(dk, εk) be an ε-optimal solution.
Step 3. If ψ(x∗(dk, εk)) � 0, stop; otherwise, go to step 4.
Step 4. Taking δk+1 = ψ(x∗(dk, εk)), let k := k + 1, and return to step 1.
Each step of Algorithm (A) is well defined under assumptions (H2) and (H4).

LEMMA 4.1. Assume that (H2) and (H4) hold. If algorithm (A) stops at kth
iteration, then x∗(dk, εk) is an εk-optimal solution for (P).

Proof. Suppose that algorithm (A) stops at kth iteration. Then

ψ(x∗(dk, εk)) � 0,

i.e., x∗(dk, εk) ∈ X0. Thus, from assumption (H2),

MP � f0(x
∗(dk, εk)) = L(x∗(dk, εk), dk)

= infx∈X L(x, dk) + εk � infx∈X0 L(x, dk) + εk

= MP + εk. �
LEMMA 4.2. Assume that (H2) and (H4) hold. If the sequence {x∗(dk, εk)} is
produced by algorithm (A), then

(a) ψ(x∗(dk, εk)) is a decreasing sequence;
(b) lim

k−→∞
rkψ(x∗(dk, εk)) = 0.

Proof. First we prove

rkψ(x∗(dk, εk)) < δk,∀k. (9)

Otherwise, there exists k0 such that

rk0ψ(x∗(dk0 , εk0)) � δk0 .

From step 1 and assumption (H2), we have

2MP + 1 � 2Mrk0

δk0

ψ(x∗(dk0 , εk0)) � L(x∗(dk0 , εk0), dk)

� inf
x∈X

L(x, dk0) + εk � MP + 1.

This is a contradiction. Hence, step 4 and inequality (10) yield

rk+1ψ(x∗(dk+1, εk+1)) < δk+1 = ψ(x∗(dk, εk)). (10)

By inequality (11) and rk+1 � 1, we know that {ψ(x∗(dk, εk))} is decreasing
sequence. Thus, {ψ(x∗(dk, εk))} is a bounded set. Let C be an upper bound of
{ψ(x∗(dk, εk))}. By inequality (11), we have

0 � lim
k−→∞ ψ(x∗(dk, εk)) � lim

k−→∞
C

rk

= 0.
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Thus

0 � lim
k−→∞ sup rkψ(x∗(dk, εk)) � lim

k−→∞ ψ(x∗(dk−1, εk−1)) = 0.

So (b) holds. �
Now we give a global convergence result of algorithm (A) (see Theorems 4.1

-4.3).

THEOREM 4.1. Assume that (H2) -(H4) hold and that the sequence {x∗(dk, εk)}
is produced by algorithm (A). If algorithm (A) stops at kth iteration, then x∗(dk, εk)

is an εk-optimal solution for (P). Otherwise the infinite sequence {x∗(dk, εk)} pro-
duced by algorithm (A) satisfies

(a) {ψ(x∗(dk, εk))} is a decreasing sequence;
(b) lim

k−→∞
rkψ(x∗(dk, εk)) = 0;

(c) each cluster point x∗ of {(x∗(dk, ε))} belongs to X∗.

Proof. From Lemmas 4.1 and 4.2, it is sufficient to show that (c) is true. Suppose
that there exists an infinite subset N0 ⊂ N , such that {x∗(dk, εk)}k∈N0 −→ x∗.
Then, from (b) and the continuity of ψ(x), we have ψ(x∗) � 0, i.e., x∗ ∈ X0. By
assumption (H3), for εk > 0, there exists an open set G(εk) ⊇ X0, such that

L(x, d) � f0(x) − εk, ∀x ∈ G(εk), ∀d ∈ R. (11)

Thus, there exists k0, such that

x∗(dk, εk) ∈ G(εk), ∀k � k0

Inequality (12) yields

f0(x
∗(dk, εk)) − εk � L(x∗(dk, εk), dk) � inf

x∈X
L(x, dk) + εk � MP + εk.

Let k −→ ∞, εk −→ 0 and by the continuity of f0, we obtain

f0(x
∗) � MP .

Thus x∗ ∈ X∗. �
We will further give some convergence property about algorithm (A).

LEMMA 4.3. Assume that (H1) -(H5) hold. If the sequence {x∗(dk, εk)} is pro-
duced by algorithm (A), then for any δ > 0, there exists k0, such that

x∗(dk, εk) ∈ X
∗
(δ), ∀k � k0.
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Proof. For any ε > 0, from (3)-(5), there exists an open set G(ε) ⊇ X0, such
that

MP − 2ε � f0(x) � L(x, d) + ε, ∀x ∈ G(ε),∀d ∈ R. (12)

By (H5), we can take δ0 > 0 sufficiently small, such that X
<δ0

ψ ⊆ G(ε). By Lemma
4.2 (b), we know that there exists k0, such that

x∗(dk, εk) ∈ X
<δ0

ψ ⊆ G(ε), ∀k � k0. (13)

Without loss of generality, we assume that εk � ε, it follows from (13) and (14)
that

MP − 2ε � f0(x
∗(dk, εk)) � L(x∗(dk, εk), dk) + ε

� inf
x∈X

L(x, dk) + 2ε � MP + 2ε. (14)

Replacing 2ε by δ, the conclusion follows. �
THEOREM 4.2. Assume that (H1) -(H5) hold. If the sequence {x∗(dk, εk)} is
produced by algorithm (A), then

(a) lim
k−→∞

f0(x
∗(dk, εk)) = MP ;

(b) lim
k−→∞

d(x∗(dk, εk),X0) = 0.

Proof. From Lemma 4.3, we know that (a) is true. Now from Lemma 4.2 (b) and
assumption (H5), for any open neighborhood B(X0, ρ) ⊇ X0, there exist δ > 0
and k0 > 0, such that

x∗(dk, εk) ∈ X
<δ

ψ ⊆ B(X0, ρ), ∀k � k0.

By arbitrarity of ρ > 0, we know that (b) is true. �
COROLLARY 4.1. Assume that X0 is compact and that there is an unique solu-
tion for problem (P). If conditions of Theorem 4.2 are satisfied, then

lim
k−→∞

x∗(dk, εk) = x∗.

THEOREM 4.3. Assume that (H1) -(H5) hold and X
∗
(δ) be upper semicontinuous

at δ = 0. If the sequence {x∗(dk, εk)} is produced by algorithm (A), then

lim
k−→∞

d(x∗(dk, εk),X
∗
0) = 0.

Proof. For any open neighborhood B(X
∗
0, ρ) ⊇ X

∗
0, by the conditions of The-

orem, there exists δ > 0 sufficiently small, such that X
∗
0 = X

∗
(δ) ⊆ B(X

∗
0, ρ). By

Lemma 4.3, there exists k0 > 0, such that

x∗(dk, εk) ∈ X
∗
(δ) ⊆ B(X

∗
0, ρ),

By arbitrarity of ρ > 0, we know that The conclusion is true. �
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REMARK . If for any d ∈ R, there exists an optimal solution x∗(d, 0) for (D(d)),
then Theorem 4.3 is reduced to the main result (Theorem 2.2) in [1].

COROLLARY 4.2. Under the conditions of Theorem 4.3, if there exists an unique
optimal solution x∗ for (P), then

lim
k−→∞

x∗(dk, εk) = x∗.

5. Examples

In this section, we give some general Lagrangian functions L(x, d) that satisfy
assumptions (H2) − (H4). Assumptions (H1) and (H5) are required for f0 and ψ

to assure a zero duality gap. It is not difficult to see that Lagrangian functions in
[5, 12, 13] and [9] satisfy assumptions (H2) − (H4).

Let X0 = {x ∈ X|fi(x) � 0, 1 � i � m}. f0(x) is a uniformly continuous
function on an open neighborhood containing X0. θ(x) satisfies

(1) θ(x) = 0 ⇐⇒ x ∈ X0;
(2) it is a uniformly continuous function on an open neighborhood containing

X0. In addition, we assume that MP > 0.

1). L(x, d) = |f0(x) + θ(x)| + ∑m
i=1 di max{fi(x), 0}, d ∈ R

m+;

2). L(x, d) = (|f0(x) + θ(x)|p + ∑m
i=1(di max{fi(x), 0})p)

1
p , p > 0, d ∈

R
m+;

3). L(x, d) = max{f0(x) + θ(x), d1f1(x), · · · , dmfm(x)}, d ∈ R
m+;

4). L(x, d) = |f0(x) + θ(x)| + ∑m
i=1(exp(di max{fi(x), 0} − 1)) d ∈ R

m+;
5). L(x, d) = max{f0(x) + θ(x), exp(d1 max{f1(x), 0}) − 1, · · · , exp(dm max

{fm(x), 0}) − 1}, d ∈ R
m+;

6). L(x, d) = max{f0(x)+ θ(x), d1f1(x), · · · , dmfm(x)}+∏m
i=1 ri max{fi(x),

0}, r, d ∈ R
m+;

7). L(x, d) = f0(x) + |θ(x)| + ∑m
i=1 di max{fi(x), 0}, d ∈ R

m+.
It is easy to check that L(x, d) in 1)-7) satisfy assumptions (H2) − (H4). For

example

L(x, d) = |f0(x) + θ(x)| +
m∑

i=1

di max{fi(x), 0}, d ∈ R
m
+

in 1) obviously satisfies (H2). For given r > 0, let di = r, 1 � i � m. And suppose
that ψ(x) = ∑m

i=1 max{fi(x), 0}. When x ∈ X\X0, we have

L(x, d) � rψ(x), ∀d ∈ R
m,

i.e., L(x, d) satisfying (H4). From the assumptions on f0(x) and θ(x), for any
ε > 0, there exists an open set G(ε) ⊇ X0, such that

f0(x) � 0, |θ(x)| < ε, ∀x ∈ G(ε).
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Hence, for x ∈ G(ε), we have

L(x, d) � |f0(x) + θ(x)| � |f0(x)| − |θ(x)| � f0(x) − ε, ∀d ∈ R
m
+,

i.e., L(x, d) satisfies (H3).
Here θ(x) plays a perturbation role, its construction is very flexible. For ex-

ample, we can take

θ(x) =
{∑m

i=1 αimax{fi(x), 0}, if x ∈ G ⊃ X0

+∞, if x /∈ G,

where G is an open set, fi(x) (1 � i � m) are uniformly continuous functions on
G, α = (α1, · · · , αm) belongs to a compact set in R

n.
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